
Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

C. Fontbonne and J.-M. Fontbonne | LPC Caen
Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France
Contact.espadon@lpccaen.in2p3.fr
https://espadon.cnrs.fr/

Raw DICOM handling

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

2

Table of content

1 Introduction. What we will learn? ... 3

2 Retrieving DICOM information .. 3

2.1 Basics of DICOM storage ... 3

2.2 Exploring DICOM tree .. 5

2.3 Retrieving data .. 6

2.4 List representation .. 8

2.5 Use of proprietary dictionary .. 9

2.6 Example: reading and displaying a rtimage file ... 11

3 Changing DICOM content .. 12

3.1 My rtplan file structure ... 12

3.2 Changing leaves potisions ... 14

4 What we learned ... 16

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

3

1 Introduction. What we will learn?

DICOM access is extremely simplified in espadon, but for at least two reasons, you may want to access DICOM
raw data, namely:

 In order to get information you need, that are not available in the Patient Oriented View (POV), for
instance the magnetic field in MRs,

 In order to change the DICOM content, for instance, to check if you favorite dosimeter is able to
detect accelerator/multi leaves collimator (MLC) malfunctions.

Changing the DICOM content is extremely dangerous and shall never be applied to
patient treatment. We decline any responsible for losses, damages, or injury incurred by
your use of these functionalities.

The first section will be devoted to retrieving DICOM information, the second section to DICOM content
modifying.

2 Retrieving DICOM information

The first step consists in loading the DICOM file into memory:

require (espadon)

dcm.filename <- file.choose ()
dcm <- dicom.raw.data.loader (dcm.filename)

Doing this just load “raw” data you cannot exploit…

str (dcm)

 raw [1:530278] 00 00 00 00 ...

Note: if you use the Rdcm file format, you have access to DICOM content using the load.Rdcm.raw.data
instruction. It returns a list, and the DICOM data are stored in the $data element of this list as a named list
of tags whose content is the decoded value of each tag. See §II.4 for handling such object.

2.1 Basics of DICOM storage

The most important instruction is dicom.parser. It provides you with a view of the parsed DICOM content
stored in an intelligible data frame:

L <- dicom.parser (dcm)
str (L)

'data.frame': 380 obs. of 5 variables:

 $ TAG : chr "(0002,0000)" "(0002,0001)" "(0002,0002)" "(0002,0003)" ...

 $ VR : chr "UL" "OB" "UI" "UI" ...

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

4

 $ VM : chr "File Meta Information Group Length" "File Meta Information Version" "Media Storage SOP
Class UID" "Media Storage SOP Instance UID" ...

 $ loadsize: int 1 2 1 1 1 1 1 1 1 1 ...

 $ Value : chr "208" "0\\1" "1.2.840.10008.5.1.4.1.1.4"

"1.2.840.113619.2.410.2807.1557385.13973.1569908968.207" ...

The resulting data frame contains:

 TAG: specific DICOM tags formed by 2 hexadecimal 16 bits words (in upper case) separated by a coma
and surrounded by parenthesis, possibly followed by the word ‘item’ completed by a number.

 VR: the value representation as expressed in DICOM format

 VM: the value meaning in the DICOM dictionary integrated in espadon

 loadsize: the number of objects stored in the tag

 Value: the text value of the content, when possible

Executing View(L), you would get something like that (using RStudio):

…

When VR tells us that the tag content is text (VR = “AE”, “AS”, “CS”, “DA”, “DS”, “IS”, “LO”, “LT”, “PN”, “SH”,
“ST”, “TM”, “UI”, “UN”, “UT”), the Value field exactly represents the text stored (whatever the text string
length).

For binary stored tags (VR = ”OB”, “OW”, …), see for instance (0002,0001) or (7FE0,0010), the text string is
the concatenation of the tag content, limited to txt.length characters. When the string is truncated, the it
is terminated by “…”. Beware that, in espadon the separator used by default for binary stored tags is “\\”. It
appears explicitly in the text string. However, when represented in RStudio using View, only one backslash is
visible (but there are actually two).

Some tags are assigned “UN” VR. This means that this tag is unknown in the DICOM dictionary. It is probably
a manufacturer’s proprietary tag. In our case, all “UN” tags were anonymized (conservative position, as we
do not know what they could contain) and the decoded string is empty. For an original DICOM file, it would
not be empty and the content is supposed be in ascii format.

DICOM is in fact an encapsulated format. This aspect can be seen in the example below:

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

5

…

The (0008,1140) tag starts the “Referenced Image Sequence”. In this sequence, every tag will begin with
(0008,1140). There may be several items in this sequence (here, in instance, 4). The tag is followed by the
“item” term, followed by the item number itself (1..4). Then the tag is completed by the tag of the item of
the sequence, for instance (0008,1150) forming the final tag, for instance “(0008,1140) item3 (0008,1150)“.
This tag should be understood as “Referenced SOP Class UID” of the third item in the “Referenced Image
Sequence”.

2.2 Exploring DICOM tree

Exploring DICOM files content can be a complex task as DICOM formats ensures you have all relevant
information, but sometimes stored a strange way. espadon contains a user interface that allows you to
navigate at will to examine the architecture of the file and its contents. To do this, simply call dicom.viewer
function:

require (espadon)

dcm.filename <- file.choose ()
dcm <- dicom.raw.data.loader (dcm.filename)
dicom.viewer(dcm)

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

6

Espadon DICOM viewer. In red, from left to right : the DICOM TAG or item, its value representation,
its meaning and its contain (l imited by the number of character s you requested). In green: in order
to navigate, use this slider. In orange: if you want to open or close a sequence or an item, cl ick on

the arrow.

2.3 Retrieving data

Once the format understood, retrieving data is “almost” easy using the grepl instruction.

If you do not know the tags you are looking for, you can search the VM field for specific words, for instance:

idx <- grepl ("coil", tolower (L$VM), fixed = TRUE)
L[idx, c("TAG", "VR", "VM", "Value")]

 TAG VR VM Value

108 (0018,1250) SH Receive Coil Name Head 24

idx <- grepl ("magnetic", tolower (L$VM), fixed = TRUE)
L[idx, c("TAG", "VR", "VM", "Value")]

 TAG VR VM Value
94 (0018,0087) DS Magnetic Field Strength 1.5

idx <- grepl ("angle", tolower (L$VM), fixed = TRUE)
L[idx, c("TAG", "VR", "VM", "Value")]

 TAG VR VM Value

111 (0018,1314) DS Flip Angle 15

112 (0018,1315) CS Variable Flip Angle Flag N

Beware that such a search can return several results (like “angle” for instance).

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

7

Note the fixed = TRUE option when calling grepl, meaning the pattern (“coil” for instance) is a sentence
that should be search exactly as it is written.

Note also that we converted VM to lower case to match the pattern. We could have used
ignore.case = TRUE option when calling grepl instead.

If you know the explicit tag, you have several options depending on your needs. Let us illustrate some, by the
use of the powerful (but sometimes confusing) grepl instruction:

idx <- grepl ("(0008,1140)", L$TAG, fixed = TRUE)
L[idx, c("TAG", "VR", "VM", "Value")]

 TAG VR VM Value

39 (0008,1140) SQ Referenced Image Sequence

40 (0008,1140) item1 00

41 (0008,1140) item1 (0008,1150) UI Referenced SOP Class UID 1.2.840.10008.5.1.4.1.1.4

42 (0008,1140) item1 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.896

43 (0008,1140) item1 (FFFE,E00D) 00 Item Delimitation Item

44 (0008,1140) item2 00

45 (0008,1140) item2 (0008,1150) UI Referenced SOP Class UID 1.2.840.10008.5.1.4.1.1.4

46 (0008,1140) item2 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.881

47 (0008,1140) item2 (FFFE,E00D) 00 Item Delimitation Item

48 (0008,1140) item3 00

49 (0008,1140) item3 (0008,1150) UI Referenced SOP Class UID 1.2.840.10008.5.1.4.1.1.4

50 (0008,1140) item3 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.887

51 (0008,1140) item3 (FFFE,E00D) 00 Item Delimitation Item

52 (0008,1140) item4 00

53 (0008,1140) item4 (0008,1150) UI Referenced SOP Class UID 1.2.840.10008.5.1.4.1.1.4

54 (0008,1140) item4 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.878

55 (0008,1140) item4 (FFFE,E00D) 00 Item Delimitation Item

As fixed = TRUE, grepl explicitly searches for the specified tag. We see that (0008,1140) starts a sequence
(its VR is “SQ”). This sequence has 4 items, each item having several tags.

grepl returns every occurrence of the tag, even if it is not at first position. For instance:

idx <- grepl ("(0008,1155)", L$TAG, fixed = TRUE)
L[idx, c("TAG", "VR", "VM", "Value")]

 TAG VR VM Value

36 (0008,1120) item1 (0008,1155) UI Referenced SOP Instance UID 1.2.124.113532.80.22144.5.20190729.143342.1107833

42 (0008,1140) item1 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.896

46 (0008,1140) item2 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.881

50 (0008,1140) item3 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.887

54 (0008,1140) item4 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.878

Here we get the lines previously discovered (42 to 54) searching for (0008,1140), and we learn that this tag
is also used in (0008,1120). One thing important to remind on tags is that a tag is just a meaning. So far, it
can be used in any sequence, if its meaning is correct in the context. Thus, searching for explicit tags can be
hazardous…

Last, it is important to note that grepl uses regular expressions (regexp) that are not text (unless
fixed = TRUE), but more or less complex character sequences we want to look for. For instance, we learned
that (0008,1140) starts a sequence. A good question could be: “how many items are there in this
sequence”? To answer this question, try this:

idx <- grepl ("^[(]0008,1140[)] item[[:digit:]]+$", L$TAG)
L[idx, c("TAG", "VR", "VM", "Value")]

 TAG VR VM Value
40 (0008,1140) item1 00

44 (0008,1140) item2 00

48 (0008,1140) item3 00

52 (0008,1140) item4 00

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

8

Here, we truly used a regexp, and clearly, it need some explanations:

1) We are searching for “0008,1140” string.
2) This string should be in parenthesis. Parenthesis have a specific meaning in regexp, if we would have

begun our regexp by “(0008,1140)”, we would have got… nothing. In order to tell the regexp we
explicitly want parenthesis, we must enclose them in square brackets: “[(]” and “[)]”.

3) We want “(0008,1140)” be exactly at the beginning of the sentence. This is the role of “^”.
4) Next, we want “ item”,
5) Followed by a number. That is why “item” is followed by “[[:digit:]]”, meaning we want any

number in 0-9.
6) As we do not know the number (it could exceed 9, as for instance “10” or more), we tell the regexp

the digit could be repeated. This is the “+”.
7) Last, we want this digit conclude the string, that is the “$”.

In other words, we are searching for something “exactly” like that: “(0008,1140) itemX..X” where “X” is a
digit. Well, regexp are powerful, but exhausting… Yet, we got the item delimiters of the sequence, and we
can search further into each item.

As we know the number of items, we can now search for data of the third item (for instance):

idx <- grepl ("^[(]0008,1140[)] item3", L$TAG)
L[idx, c("TAG", "VR", "VM", "Value")]

 TAG VR VM Value

48 (0008,1140) item3 00

49 (0008,1140) item3 (0008,1150) UI Referenced SOP Class UID 1.2.840.10008.5.1.4.1.1.4

50 (0008,1140) item3 (0008,1155) UI Referenced SOP Instance UID 1.2.840.113619.2.410.2807.1557385.13973.1569908966.887

51 (0008,1140) item3 (FFFE,E00D) 00 Item Delimitation Item

Beware that this search would have given you a positive response for “(0008,1140) item 30” also… Could
you find, knowing the tag structure, how to exclude (or include) numbers with several digits?

Answer: just add an empty space at the end of the sentence.

2.4 List representation

For the moment, we just accessed character strings stored in a data frame. It is usually sufficient as espadon
incorporates mechanisms to handle relevant information and images for DICOM in oncology. In the case of
other modalities, it can be useful to access raw data. If you are in this case, consider using the dicom.parser
instruction with as.txt = FALSE option. It will give you a list of DICOM tags decoded according DICOM
format:

L <- dicom.parser (dcm, as.txt = FALSE)
str (L)

List of 54
 $ (0002,0000): num 200

 $ (0002,0001): int [1:2] 0 1

 $ (0002,0002): chr "1.2.840.10008.5.1.4.1.1.481.2"

 $ (0002,0003): chr "1.2.752.243.1.1.20200625182835514.4000.38473"

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

9

…

This way, every tag is decoded and can be accessed for processing, as for instance (7FE0,0010), which is an
image. Obviously, in this case, all the processing of the image is of your concern and you will need to find
ways to decode it properly.

 Accessing each tag uses the same string strategies described above except, we now have a list, for
instance:

L$"(0008,0060)"

[1] "RTDOSE"

L[["(0008,0060)"]]

[1] "RTDOSE"

2.5 Use of proprietary dictionary

Espadon contains a DICOM tags dictionary you can access with dicom.tag.dictionary. This dictionary is by
default the merge of DICOM dictionary from nema (https://www.dicomstandard.org/current) and Raysearch
(https://www.raysearchlabs.com/4aaf2e/siteassets/raystation-landing-page/dicom-conformance-
statements/raystation-pdfs/rsl-d-rs-11a-dcs-en-1.0-2021-05-07-raystation-11a-dicom-conformance-
statement.pdf). It is possible to use only the nema dictionary, by assigning the parameter add.dict to NULL.
The dicom.tag.dictionary contains the DICOM translation of tags (upper case), tags content and the Value
Representation of the tags content (i.e. encoding mode).

str (dicom.tag.dictionary ())

'data.frame': 5925 obs. of 3 variables:
 $ tag : chr "(0000,0000)" "(0000,0001)" "(0000,0002)" "(0000,0003)" ...

 $ name: chr "Command Group Length" "Command Length to End" "Affected SOP Class UID" "Requested SOP Class

UID" ...

 $ VR : chr "UL" "UL" "UI" "UI" ...

It is in fact a simple data frame, which is provided, by default to any function requiring it.

https://www.dicomstandard.org/current
https://www.raysearchlabs.com/4aaf2e/siteassets/raystation-landing-page/dicom-conformance-statements/raystation-pdfs/rsl-d-rs-11a-dcs-en-1.0-2021-05-07-raystation-11a-dicom-conformance-statement.pdf
https://www.raysearchlabs.com/4aaf2e/siteassets/raystation-landing-page/dicom-conformance-statements/raystation-pdfs/rsl-d-rs-11a-dcs-en-1.0-2021-05-07-raystation-11a-dicom-conformance-statement.pdf
https://www.raysearchlabs.com/4aaf2e/siteassets/raystation-landing-page/dicom-conformance-statements/raystation-pdfs/rsl-d-rs-11a-dcs-en-1.0-2021-05-07-raystation-11a-dicom-conformance-statement.pdf

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

10

 You may also have access to proprietary (i.e. manufacturers) dictionaries (which was not our case, as
illustrated above). There is a mechanism in espadon to integrate these dictionaries and get appropriate data
representations and meaning.

You “just” have to:

1) check your dictionary is strictly conform to espadon dictionary structure as shown above,
2) merge both, using for instance:

my.dicom.tag.dictionary = cbind (dicom.tag.dictionary (), the.dictionary.I.just.l

oaded),
3) check there are no redundancies in tags, for instance, check

length (unique (my.dicom.tag.dictionary$tag)) == length (my.dicom.tag.dictionary$

tag) is TRUE
4) and use the resulting dictionary in instructions like for instance

dicom.parser (dicom.raw.data, …, tag.dictionary = my.dicom.tag.dictionary)

You should have your new tags decoded well.

 If you do not have access to a proprietary dictionary, several solutions exist, for instance:

L <- dicom.parser (dcm, txt.length = 100)

Here, you have access to the bytes content of “UN” VR fields. If you try:

L <- dicom.parser (dcm, try.parse = TRUE, txt.length = 100)

The fields are decoded as text, when possible, even if we do not know their meaning. Some of them become
explicit, as (3287,0010), some of them stay unreadable, as (3287,1000). When try.parse = TRUE,
espadon convert raw data into text, until it finds a “00” byte.

BEWARE that, when using the pseudonymisation functionality of espadon, every field of “UN” VR is emptied
because it could have contented free text (patient information for instance).

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

11

2.6 Example: reading and displaying a rtimage file

rt-Image belong to the formats not included natively in espadon for reasons already explained (too
dependent on manufacturers and devices). If you are interested in using such files, you can try something
like that:

Imaging objects often contain important data for image retrieving, as for instance:

tag meaning Value in my example

(0028,0010) Rows 512

(0028,0011) Columns 512

(0028,0100) Bits allocated 16

(0028,0101) Bits stored 16

(0028,0102) High Bit 15

And far more in this case, such as gantry angle, jaws... But we know that we want probably read a 512x512
pixels image, stored as unsigned words.

Then, the image is stored in the (7FE0,0010) tag. It is exactly 524288 Bytes (512x512x2) as expected.

We could try to read it:

dcm.filename <- file.choose ()
dcm <- dicom.raw.data.loader (dcm.filename)
L <- dicom.parser (dcm, as.txt = FALSE)
raw.data <- L[["(7FE0,0010)"]]
raw.image <- readBin(raw.data, what="integer", size = 2, n=length (img) / 2)
my.image <- matrix (raw.image, ncol = 512)
dev.new (width = 7, height = 7, noRStudioGD = T)
image (my.image, useRaster = TRUE)

rtimage

Well, it works with 8 lines of code, even if it is only the beginning of the story. Obviously, in order to use such
images, you probably would have to read other tags to precisely know the geometry of your image(s) (gantry
angle, imaging device position, pixel sizes in mm, intensity meaning, …).

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

12

3 Changing DICOM content

We learned, in the previous chapter, how to navigate into DICOM content. Here, we will learn how to change
it and save it as a new DICOM file.

Changing DICOM content can be useful for physicists, in order to check their ability to detect delivery faults,
but it can be extremely hazardous. DO NOT USE THIS FUNCTIONALITY if you are not precisely sure what you
are doing! The example below is given without guaranty of success.

The main instruction to change DICOM content is dicom.set.tag.value. It operates only on text fields in
the DICOM raw data. As espadon does not know produce DICOMs, you cannot add new fields, just modify
existing text fields. Text fields have a VR in {“AE”, “AS”, “CS”, “DA”, “DS”, “IS”, “LO”, “LT”, “PN”, “SH”, “ST”,
“TM”, “UI”, “UN”, “UT”}. dicom.set.tag.value is vectored, since it is time consuming, especially for rt-Plan
or rt-Stuct. The best way is to prepare the changing collection, and apply it once, just before saving the
modified DICOM file.

In this example, we will work on a rt-Plan for a Halcyon machine equipped with a stacked‐and‐staggered
dual‐layer multileaf collimator (MLC), consisting of a distal (MLCX1) and a proximal (MLCX2) layer. We want
to change a given leaf position in order to simulate a MLC malfunction

The first step consists in understanding the file structure, and then change appropriate fields.

3.1 My rtplan file structure

The (300A,00B0) tag contains the “Beam Sequence” stored as items, as the plan can contains several beams.
A “beam Sequence” item (may/shall/should, depending on your manufacturer) contains:

 (300A,00CE), the “Treatment Delivery Type”. Note it is an optional field. We will only use tag value
“TREATMENT” as a beam can also be used for portal imaging, for instance.

 (300A,0110), the “Number of Control Points”.

 (300A,00B6) which is the description of “Beam Limiting Device Sequence”. Each item contains:
 (300A,00B8), the “RT Beam Limiting Device Type” whose Value is in {‘X’, ‘Y’, ‘ASYMX’,

‘ASYMY’, ‘MLCX1’, ‘MLCX2’}
 (300A,00BC), the “Number of Leaf/Jaw Pairs”
 (300A,00BE), the “Leaf Position Boundaries”

 (300A,0111) which is the “Control Point Sequence” that interests us. It contains:
 (300A,011E), the “Gantry Angle”. We may change its value for simulating a gantry

malfunction, for instance.
 (300A,011A), the “Beam Limiting Device Position Sequence”. It contains:

 (300A,00B8), the “RT Beam Limiting Device Type” whose Value is in {‘X’, ‘Y’,
‘ASYMX’, ‘ASYMY’, ‘MLCX1’, ‘MLCX2’}, as previously quoted above.

 (300A,011C), finally, the “Leaf/Jaw Positions”. Is is a text vector. Positions of beam
limiting device (collimator) leaf (element) or jaw pairs (in mm) in IEC BEAM LIMITING
DEVICE coordinate axis appropriate to RT Beam Limiting Device Type (300A,00B8),
e.g., X-axis for MLCX, Y-axis for MLCY. Contains 2N values, where N is the Number of
Leaf/Jaw Pairs (300A,00BC) in Beam Limiting Device Sequence (300A,00B6). Values

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

13

shall be listed in IEC leaf (element) subscript order 101, 102, … 1N, 201, 202, … 2N, as
quoted in DICOM PS3.3 reference.

For our specific device, executing:

dcm.filename <- file.choose ()
dcm <- dicom.raw.data.loader (dcm.filename)

list.to.df <- function (L) {
 last.tag <- sapply(strsplit(names (L),'[]'), function (l) rev(l)[1])
 db <- dicom.tag.dictionary()[match(last.tag, dicom.tag.dictionary()$tag), c("VR","name")]
 db$TAG <-names(L)
 db$Value <- sapply(L, function (l) {
 if (length(l)==0) return("")
 if (is.na(l[1])) return("")
 if (length(l)>1) return(paste("vector of",length(l),"elements"))
 return(as.character(l))
 })
 db <- db[, c(3,1:2,4)]
 colnames (db)<- c("TAG","VR","VM","Value")
 db$VR [grep("^item", last.tag)] <- "00"
 db$VR [is.na(db$VR)] <- "UN"
 db$VM[is.na(db$VM)] <- ""
 return (db)
}
L <- list.to.df (dicom.parser (dcm, as.txt = FALSE))

idx <- grepl ("^[(]300A,00B0[)] item[[:digit:]]+ [(]300A,00B6[)] item[[:digit:]]+ [(]300A,00B8[)]", L$TAG)
unique (L[idx, "Value"])

[1] "X " "Y " "MLCX1 " "MLCX2 "

tells us we have 2 multi leaf collimators called “MLCX1” and “MLCX2”. Note the spaces in the answer; in
DICOM format, strings often contain an even number of characters.

Now, we would like to know how many leaves has each MLC:

idx1 <- grepl ("^[(]300A,00B0[)] item[[:digit:]]+ [(]300A,00B6[)] item[[:digit:]]+ [(]300A,00B8[)]", L$TAG)
idx2 <- grepl ("^[(]300A,00B0[)] item[[:digit:]]+ [(]300A,00B6[)] item[[:digit:]]+ [(]300A,00BC[)]", L$TAG)
table (L[idx1, c ("Value")], L[idx2, c ("Value")])

 1 28 29

 MLCX1 0 4 0

 MLCX2 0 0 4

 X 4 0 0

 Y 4 0 0

MLCX1 has 28 leaf pairs, and MLCX2, 29.

If we admit (as we checked) that each beam uses the same beam limiting devices, we can get the boundaries
for each limiting device, here for instance, MLCX2:

idx <- grepl ("^[(]300A,00B0[)] item1 [(]300A,00B6[)] item4", L$TAG)
L[idx, c("TAG", "VR", "VM", "Value")]

 TAG VR VM

169 (300A,00B0) item1 (300A,00B6) item4 00

170 (300A,00B0) item1 (300A,00B6) item4 (300A,00B8) CS RT Beam Limiting Device Type

171 (300A,00B0) item1 (300A,00B6) item4 (300A,00BC) IS Number of Leaf/Jaw Pairs

172 (300A,00B0) item1 (300A,00B6) item4 (300A,00BE) DS Leaf Position Boundaries

173 (300A,00B0) item1 (300A,00B6) item4 (FFFE,E00D) 00 Item Delimitation Item

Value

169

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

14

170
MLCX2

171

29

172 -145\\-135\\-125\\-115\\-105\\-95\\-85\\-75\\-65\\-55\\-45\\-35\\-25\\-15\\-

5\\5\\15\\25\\35\\45\\55\\65\\75\\85\\95\\105\\115\\125\\135\\145

173

There are 30 boundaries, as we have 29 leaves.

3.2 Changing leaves potisions

In order to change DICOM content, we will use the dicom.set.tag.value instruction. It needs a vector of
tags to change and a vector of new tags values.

Suppose we would like to simulate a MLC malfunction affecting MLCX2 where the leaves 13 to 15 of both
sides are -10 mm away their actual position. The code could be something like that:

First, we need to find every tag corresponding to MLCX2 and get leaves positions:

MLC <- "MLCX2"
idx1 <- grepl (MLC, L$Value)
all.MLCX2.tags <- L$TAG[idx1]
head (all.MLCX2.tags)

[1] "(300A,0040) item1 (300A,0048) item6 (300A,00B8)"

[2] "(300A,00B0) item1 (300A,00B6) item4 (300A,00B8)"

[3] "(300A,00B0) item1 (300A,0111) item1 (300A,011A) item4 (300A,00B8)"

[4] "(300A,00B0) item1 (300A,0111) item2 (300A,011A) item2 (300A,00B8)"

[5] "(300A,00B0) item1 (300A,0111) item3 (300A,011A) item2 (300A,00B8)"

[6] "(300A,00B0) item1 (300A,0111) item4 (300A,011A) item2 (300A,00B8)"

This selection gives all references related to MLCX2, not only leaves positions, but also boundary limits,… We
must restrict our search to (300A,011A) tag:

idx2 <- grepl ("[(]300A,011A[)]", all.MLCX2.tags)

In fact, we are not interested in (300A,00B8) tag, but rather in (300A,011C) that contains the leaves positions.
We just have to replace the former by the latter:

MLC.tags <- strsplit (all.MLCX2.tags[idx2], " ")
MLC.tags <- sapply (MLC.tags, function (tag.encaps) paste (c (rev (rev (tag.encaps)[-1]), "(300A,011C)"),
collapse = " "))
head (MLC.tags)

[1] "(300A,00B0) item1 (300A,0111) item1 (300A,011A) item4 (300A,011C)"

[2] "(300A,00B0) item1 (300A,0111) item2 (300A,011A) item2 (300A,011C)"

[3] "(300A,00B0) item1 (300A,0111) item3 (300A,011A) item2 (300A,011C)"

[4] "(300A,00B0) item1 (300A,0111) item4 (300A,011A) item2 (300A,011C)"

[5] "(300A,00B0) item1 (300A,0111) item5 (300A,011A) item2 (300A,011C)"

[6] "(300A,00B0) item1 (300A,0111) item6 (300A,011A) item2 (300A,011C)"

And retrieve the MLC positions:

my.MLC <- L[L$TAG %in% MLC.tags,]

At this point, it could be a good idea to display some leaves:

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

15

disp.leaf <- function (leaves, idx) {
 leaf <- as.numeric (strsplit (leaves[idx], "[\\]")[[1]])
 Nl <- length(leaf) / 2
 plot (c(-150, 150), c(1, Nl), typ="n", main = idx, xlab = "mm", ylab = "leaf #")
 rect (-150, .5, 150, Nl+.5, col="grey")
 abline (h=1:Nl, lty=3)
 rect (-150, 1:Nl-0.5, leaf[1:Nl], 1:Nl+0.5, col="red")
 rect (leaf[Nl+1:Nl], 1:Nl-0.5, 150, 1:Nl+0.5, col="green")
}
disp.leaf (my.MLC$Value, 101)
disp.leaf (my.MLC$Value, 102)
disp.leaf (my.MLC$Value, 103)

The next step consists in changing leaves positions. In this example, leaves are numbered from 1 to N.leaves.
Left leaves are in banc 1 and right leaves in banc 2:

N.leaves <- 29
leaf <- c(13, 14, 15, 13, 14, 15)
leaf.banc <- c(1, 1, 1, 2, 2, 2)
leaf.delta <- rep (-10, 6)
dummy <- sapply (my.MLC$Value, function (leaves) {
 leaf.pos <- as.numeric (strsplit (leaves, "[\\]")[[1]])
 leaf.pos[(leaf.banc-1) * N.leaves + leaf] <- leaf.pos[(leaf.banc-1) * N.leaves + leaf] + leaf.delta
 return (paste (leaf.pos, collapse="\\"))
})
names (dummy) <- NULL
my.MLC$Value <- dummy

Leaves positions MLC X2

Note: it could be a good idea to check for leaves collisions or positions not allowed by the MLC hardware.

Last, we just have to change the raw DICOM and save it with an explicit name:

dcm.changed <- dicom.set.tag.value(dcm, my.MLC$TAG, my.MLC$Value)
zz <- file (paste ("new", basename (dcm.filename), sep="_"), "wb")
writeBin(dcm.changed, zz, size = 1)
close (zz)

The “new_” file will be saved in your current folder.

If you try to import this file into the TPS that produced the initial rt-Plan, you may get an error message. It is
because the rt-Plan is not known only by its filename, but also by its unique identifier, the SOPInstanceUID.
So, for obvious security reasons, the TPS do not want to replace the initial rt-Plan by the new one. A way to
get around this problem consists in changing the SOPInstanceUID, tag (0008,0018), for a new one, for
instance, adding 1 to the last digit.

-150 -100 -50 0 50 100 150

0
5

1
0

1
5

2
0

2
5

3
0

101

mm

le
a

f
#

-150 -100 -50 0 50 100 150

0
5

1
0

1
5

2
0

2
5

3
0

102

mm

le
a

f
#

-150 -100 -50 0 50 100 150

0
5

1
0

1
5

2
0

2
5

3
0

103

mm

le
a

f
#

Package espadon: raw DICOM handling 2022-06-22 Version 1.0.3

16

4 What we learned

Despite everything is made in espadon to avoid the user using and knowing DICOM format, it may be useful
in many situation to have a look at the original DICOM content.

In this case, you just have to load your file using the dicom.raw.data.loader instruction. Then, depending
on your problem, you can access the data using dicom.parser for character string fields as a data frame, or
using dicom.parser (…, as.txt = FALSE) for decoded or raw data as a tag list.

Then, you will need to find your favorite DICOM fields using, for instance a grepl on L$TAG in case of a data
frame or names (L) in case of a list.

If you have a specific DICOM dictionary (coming from a manufacturer), you can incorporate it in espadon.

You can change the content of your DICOM only for character strings VR, using the dicom.set.tag.value
instruction. Finally save this new DICOM.

For more information on DICOM file structure and data representation, have a look at dicomstandard.org
website, and begin with a search on PS3.5, for instance.

For more information on DICOM tags, their meaning, their chaining/nesting and far more, have a look at the
browser of https://dicom.innolitics.com or execute the code given as example.

Last but not least, don’t forget to have a look at espadon manual to discover instruction arguments that could
help you.

You can see also :

dicom.browser DICOM raw data browser
dicom.parser Conversion of DICOM raw data into a dataframe or a list of DICOM TAG
information.
dicom.raw.data.anonymizer DICOM anonymizer
dicom.raw.data.loader DICOM file loader in raw data
dicom.set.tag.value Change TAG value in DICOM raw data
dicom.tag.dictionary DICOM TAG dictionary
dicom.tag.parser DICOM TAG parser
load.Rdcm.raw.data Loading a *.Rdcm file.
xlsx.from.dcm Converting DICOM files to .xlsx files

https://dicom.innolitics.com/

