
Package espadon: Computing cumulative dose 2022-05-09 Version 1.0.0

C. Fontbonne and J.-M. Fontbonne | LPC Caen
Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France
Contact.espadon@lpccaen.in2p3.fr
https://espadon.cnrs.fr/

Computing cumulative dose

Package espadon: Computing cumulative dose 2022-05-09 Version 1.0.0

2

Table of content

1 The case ... 3

2 How to do in this case? .. 4

3 What if plans are not connected by a reg file? .. 5

Package espadon: Computing cumulative dose 2022-05-09 Version 1.0.0

3

1 The case

The patient had a proton beam treatment followed by a boost with a CyberKnife (CK) machine (because the
tumor volume was located near the optical nerve). We want to cumulate both plans in order to get the total
dose received by organs.

First, we load the plans and display patient-oriented view:

require (espadon)

pat.dir <- choose.dir ()
pat <- load.patient.from.dicom (pat.dir)

dev.new (width = 4, height = 4, noRStudioGD = T)
display.obj.links (pat)

The patient-oriented view

The proton plan consists of two beams (rtdose 1 and rtdose 2) whose sum is stored in rtdose 3. The CK plan
is in rtdose 4. Each plan has been built on its own CT, ct 2 for the proton plan, and ct 3 or 4 for the CK.

The two plans are linked by a reg file since their colours are identical. So we have no particular problem. We
will also illustrate how to do this when this connection does not exist.

We now have to load the necessary data as suggested by the patient-oriented view:

D.p <- load.obj.data (pat$rtdose[[3]])
S.p <- load.obj.data (pat$rtstruct[[1]])
CT.p <- load.obj.data (pat$ct[[2]])

D.CK <- load.obj.data (pat$rtdose[[4]])
S.CK <- load.obj.data (pat$rtstruct[[3]])

Note there is far more information in the objects themselves to perform this operation automatically.

Just for information:

D.p$max.pixel

[1] 53.03664

Package espadon: Computing cumulative dose 2022-05-09 Version 1.0.0

4

D.CK$max.pixel

[1] 20.25316

The proton plan delivered 53 Gy, and the CK plan, 20.5 Gy. The question is “what is the cumulative dose ?”.

2 How to do in this case?

It is not possible to add two volumes if they do not share the same gridding. So, we just have to choose a
destination grid (the proton plan), and resample the CK on the proton grid. Note we had to transmit the
T.MAT as volumes do not share the same reference frame. In doing so, since the CK plan is smaller than the
proton plan, espadon fills in the unknown areas with NA. These NAs must then be replaced by the desired
value (in this case, zero), before summing to obtain the cumulative plan:

D.CK.in.p <- vol.regrid (D.CK, D.p, T.MAT=pat$T.MAT)
D.CK.in.p$vol3D.data[is.na (D.CK.in.p$vol3D.data)] <- 0
D.tot <- vol.sum (D.p, D.CK.in.p)

Now, we can work on the cumulative plan D.tot! That is all we have to do.

The following code is just for checking everything goes well:

D.60 <- bin.from.vol(D.tot, min=60)
m.60 <- mesh.from.bin (D.60)
display.3D.mesh(m.60, col="#FF0000", alpha=1)
D.50 <- bin.from.vol(D.tot, min=50)
m.50 <- mesh.from.bin (D.50)
display.3D.mesh(m.50, col="#FFA500", alpha=0.5)
D.20 <- bin.from.vol(D.tot, min=20)
m.20 <- mesh.from.bin (D.20)
display.3D.mesh(m.20, col="#FFFFE0", alpha=0.3)
D.5 <- bin.from.vol(D.tot, min=5)
m.5 <- mesh.from.bin (D.5)
display.3D.mesh(m.5, col="#00FF00", alpha=0.1)
D.1 <- bin.from.vol(D.tot, min=1)
m.1 <- mesh.from.bin (D.1)
display.3D.mesh(m.1, col="#0000FF", alpha=0.05)
display.3D.contour(S.p, roi.name="nod")

Package espadon: Computing cumulative dose 2022-05-09 Version 1.0.0

5

3D representation of the cumulative dose produced by the two proton beams and the CK.

3 What if plans are not connected by a reg file?

Once loaded, the plan accumulation by itself uses only three instructions, thanks to the T.MAT process.
However, it is often the case that the change of reference frame matrices are not available… In these
conditions, one must be creative. As each plan has its own rt-struct, it is possible (although debatable) to use
the common ROIs to create your own transfer matrix.

The same patient as above where we removed the reg f il e. Now, the proton and CK plan cannot be
simply merged as their colors are not the same.

What we will attempt below is to find the transformation matrix 𝑇
𝑝

𝐶𝐾 that transforms certain organs

contoured in the CK plan into the same organs contoured in the proton plan. If we have N organs in each
plan, the problem consists in finding the matrix that satisfies:

Package espadon: Computing cumulative dose 2022-05-09 Version 1.0.0

6

𝑀𝑝 = 𝑇
𝑝

𝐶𝐾 ∙ 𝑀𝐶𝐾

Where 𝑀𝑝 and 𝑀𝐶𝐾 are 4xN matrixes (the last row being filled by ones).

The following lines fill the requested point matrix for six organs using their center of gravity:

organs <- c("oeild", "oeilg", "chiasma", "hypophyse", "oreilled", "oreilleg")
p.sel <- select.names (S.p$roi.info$roi.pseudo, roi.sname = organs)
CK.sel <- select.names (S.CK$roi.info$roi.pseudo, roi.sname = organs)

M.p <- t (as.matrix (cbind (S.p$roi.info[p.sel, c("Gx", "Gy", "Gz")], t = 1)))
M.CK <- t (as.matrix (cbind (S.CK$roi.info[CK.sel, c("Gx", "Gy", "Gz")], t = 1)))

The result is :

M.p

 4 5 10 13 49 50
Gx -25.797562 32.610765 2.724677 2.031338 -25.149906 27.705327

Gy 17.063561 19.085867 66.846765 68.086479 97.052791 98.059785

Gz 8.573492 9.033885 28.186862 18.433472 5.256013 3.927604

t 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

M.CK

 4 5 10 13 49 50

Gx -30.224554 28.18934 -1.111027 -2.063366 -29.500811 23.673654

Gy 17.449021 19.29326 67.000020 68.335599 97.303935 98.150588

Gz 6.966172 6.32097 26.001325 16.348917 3.635473 1.418336

t 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000

Looking at the matrices, it is quite clear that, in the case illustrated here, the transformation essentially
involves a translation. However, in the general case, the transformation can also imply rotations about the
various axes. We will deal with this general case.

The transformation matrix can be written as a combination of three rotations (one around each axis),
followed by a translation:

𝑇
𝑝

𝐶𝐾 = 𝑇 ∙ 𝑅𝑧 ∙ 𝑅𝑦 ∙ 𝑅𝑥

With :

𝑅𝑥 = (

1 0 0 0
0 cos𝛼 − sin𝛼 0
0 sin𝛼 cos𝛼 0
0 0 0 1

) 𝑅𝑦 = (

cos𝛽 0 sin𝛽 0
0 1 0 0

− sin𝛽 0 cos𝛽 0
0 0 0 1

)

𝑅𝑧 = (

cos 𝛾 − sin𝛾 0 0
sin 𝛾 cos𝛾 0 0
0 0 1 0
0 0 0 1

) 𝑇 = (

0 0 0 ∆𝑥
0 0 0 ∆𝑦
0 0 0 ∆𝑧
0 0 0 0

)

Therefore, we have six parameters to estimate, three of which are non-linear (the rotations).

Package espadon: Computing cumulative dose 2022-05-09 Version 1.0.0

7

To do this, we will use a solver. It needs a cost function to minimize and will try to find the six parameters by
performing a gradient descent on this cost function. The cost function we will develop is simply the mean
square deviation between the points in the space of the proton plan and the transformed points in the space
of the CK plan. The transformation matrix is itself defined from the six parameters:

build.T <- function (p) {
 Rx <- matrix (c(1, 0, 0, 0,
 0, cos (p[1]), -sin (p[1]), 0,
 0, sin (p[1]), cos (p[1]), 0,
 0, 0, 0, 1), nrow = 4, byrow = TRUE)
 Ry <- matrix (c (cos (p[2]), 0, sin (p[2]), 0,
 0, 1, 0, 0,
 -sin (p[2]), 0, cos (p[2]), 0,
 0, 0, 0, 1), nrow = 4, byrow = TRUE)
 Rz <- matrix (c (cos (p[3]), -sin (p[3]), 0, 0,
 sin (p[3]), cos (p[3]), 0, 0,
 0, 0, 1, 0,
 0, 0, 0, 1), nrow = 4, byrow = TRUE)
 Tr <- matrix (c (1, 0, 0, p[4],
 0, 1, 0, p[5],
 0, 0, 1, p[6],
 0, 0, 0, 1), nrow = 4, byrow = TRUE)
 Trans <- Tr %*% Rz %*% Ry %*% Rx

 return (Trans)
}

cost <- function (p, M1, M2) {
 M2_1 <- build.T (p) %*% M2
 sqrt (sum (apply (M1 - M2_1, 2, function (V) sum (V^2))) / ncol (M1))
}

fit <- nlm (cost, c(0,0,0,0,0,0), M.p, M.CK)

the result gives:

str (fit)

List of 5
 $ minimum : num 0.127

 $ estimate : num [1:6] -0.000776 -0.018049 0.00361 4.596098 -0.222995 ...

 $ gradient : num [1:6] -1.66e-06 1.08e-06 -1.39e-06 3.11e-08 -4.24e-08 ...

 $ code : int 2

 $ iterations: int 49

build.T (fit$estimate)

 [,1] [,2] [,3] [,4]

[1,] 0.999830607 -0.003595703 -0.0180506864 4.596098

[2,] 0.003609115 0.999993235 0.0007104633 -0.222995

[3,] 0.018048010 -0.000775490 0.9998368207 2.202375

[4,] 0.000000000 0.000000000 0.0000000000 1.000000

old.pat$T.MAT$matrix.list$`ref1<-ref2` # here, we kept a copy of the registration stored in old.pat
 # for illustration purpose. In general, you do not have this matrix

 [,1] [,2] [,3] [,4]

[1,] 0.99981790 -0.0030698590 -0.0188329900 4.6060400

[2,] 0.00308085 0.9999951000 0.0005546421 -0.2967592

[3,] 0.01883120 -0.0006125627 0.9998225000 2.1832490

[4,] 0.00000000 0.0000000000 0.0000000000 1.0000000

fit$minimum tells us the transformed points are 0.127 mmRMS away what they should be. fit$code 2 means
the solver hopes he has the right solution which is stored in fit$estimate. If we send this solution to the
build.T function, we get the estimated transform matrix that is compared with the ground truth

Package espadon: Computing cumulative dose 2022-05-09 Version 1.0.0

8

pat$T.MAT$matrix.list$`ref1<-ref2` as in this example, we had this matrix. As can be seen, the estimation of
translations is relatively correct, as well as for the rotation angles (which here are almost zero).

Last, we have to declare this new transform matrix in order to use is later.

Transf <- build.T (fit$estimate)
new.T.MAT <- ref.srctodest.add ("ref2", "ref1", Transf, pat$T.MAT)

From then on, it is sufficient to use the T.MAT mechanism, specifying, whenever necessary, to use new.T.MAT
instead of pat$T.MAT.

Of course, before using this type of connection, it is important to ensure that it is legitimate, as there is
nothing to prevent the algorithm from returning a result, even if it does not make sense. For this to have a
chance of working, you need to :

1. that the selected volumes are not coplanar (unless we are only looking for a translation, in which
case we do not need to identify the whole transformation matrix)

2. that the tumour has not changed volume, otherwise it disturbs the center of gravity of the
neighbouring volumes

3. that the position of the patient does not have too much impact on the position of the center of
gravity of the control volumes, otherwise the problem is not reduced to a simple rotation/translation

4. that the volumes are equally contoured in both planes, otherwise the center of gravity are not
correct.

5. we are certainly forgetting many necessary conditions...

